
va

s con-
e used
r long

ents.
nded
nse to
robust

els of
ith an
 are

a lan-
ata, pre-
 raw
guage
 on the
ically

 con-
quential
 input
owing
locked,
tworks
ugh

copy-

apping
aper,
uential
Implementation of Process Networks in Ja

Richard S, Stevens1, Marlene Wan, Peggy Laramie,
Thomas M. Parks, Edward A. Lee

DRAFT: 10 July 1997

Abstract

A process network, as described by G. Kahn, is a network of sequential processe
nected by FIFO queues. Process networks, a generalization of dataflow graphs, ar
extensively for representing signal processing algorithms. The requirement to run fo
times with limited memory raises concerns about deadlocking and memory requirem
T. Parks gives an algorithm for executing a given process network forever in bou
memory, whenever possible. This algorithm depends on recognition of and respo
deadlock conditions. We implemented this algorithm in Java and devised a new
method for detecting deadlocks.

1.0 Introduction

Managing concurrency has become a critical issue in many domain-specific mod
computation. Concurrency is required in reactive systems, which need to interact w
environment that produces multiple simultaneous stimuli. Networked applications
inherently concurrent, as is any application with a non-trivial user interface. The Jav
guage provides threads, which are concurrent sequential programs that can share d
cisely to deal with such applications. However, programming with threads in their
form can easily lead to errors that are difficult to diagnose. In particular, the Java lan
(correctly) does not define precisely how threads are scheduled. This is dependent
implementation. Consequently, writing multithreaded applications that behave ident
across multiple implementations requires painstaking care and attention to detail.

A Kahn process network is a directed graph, comprising a set of nodes (processes)
nected by a set of directed arcs (FIFO queues) [1, 2]. Each process executes a se
program. At any given moment this process may read a data token from one of its
queues, or it may write a data token to one of its output queues, subject to the foll
constraint: if a process attempts to read a token from an empty queue, the read is b
and the process must wait until a token is available on that queue. Such process ne
are known to be determinate2, which means that the sequence of tokens passing thro

1. Richard S. Stevens is an employee of the U.S. Government, whose written work is not subject to
right. His contribution to this work falls within the scope of 17 U.S.C. A7 105.

2. Kahn [1] gives a more general condition for determinacy, that processes be monotonic functions m
input sequences to output sequences, where “monotonic” is with respect to a prefix order. In this p
we will be concerned only with a subset of monotonic functions: those that can be described as seq
processes with blocking reads.
Implementation of Process Networks in Java July 10, 1997 1

menta-
hile

deter-
hough
atch a
time
 accep-

 Kahn
ction-

nt of
d (b)
alyzed
f the

network

s net-
mory
nded
eue is
while

cessing

rithm.
ates all
locks as

ction 2
ented

arks’
tation,
 gives
ing our

-out
a pro-
each queue over time is dependent only on the process network and not on its imple
tion [1, 2, 3]. A deadlock occurs when every process in the network is blocked w
attempting to read an empty queue.

Kahn process networks provide a higher-level concurrency model that is inherently
minate, guaranteeing consistent behavior across implementations. Moreover, alt
process networks are not an ideal model of computation for all applications, they m
wide variety of applications well. They are excellent for computation-intensive real-
applications such as signal and image processing, as evidenced by the widespread
tance of dataflow in the signal processing community. Dataflow is a special case of
process networks [5]. Process networks are more difficult to use, however, for transa
based applications where sharing a common database is key.

Many real-time applications are intended to run indefinitely using a limited amou
memory. This motivates our interest in process networks that (a) will run forever an
will do so using a bounded amount of memory. Some process networks can be an
statically to determine whether or not they meet these criteria. However, one o
authors (Parks) has observed that, in general, the questions of whether a process
meets these criteria are not decidable in finite time [6].

A further question arises about algorithms for scheduling the execution of a proces
work, and whether a given algorithm will use unbounded memory when bounded me
will suffice. Parks provides a method of running a process network forever in bou
memory, if possible. A capacity is assigned to each queue, and a write to a full qu
blocked. When a deadlock occurs involving some processes that are blocked
attempting to write, queue capacities are increased to break the deadlock, and pro
continues.

We use the Java language to implement process network execution with Parks’ algo
There is a thread for each process in addition to a main thread. The main thread cre
of the queues, creates and starts all of the process threads, and handles the dead
they occur.

In the following discussion, we use pseudo-code to show the various methods. Se
discusses the details of process networks, with specific emphasis on how we implem
blocking reads. In Section 3 we give a precise description of blocking writes and P
prescription for running in bounded memory. Section 4 presents our Java implemen
together with our analysis of the two methods for detecting deadlocks. Section 5
some examples of process networks taken from [6]. Having run these examples us
implementation, we make some observations about the behavior that we observed.

2.0 Process Networks

A process network is a set of sequential processes communicating via first-in-first
(FIFO) channels, or queues [1,2]. The following are some basic characteristics of
cess network:
Implementation of Process Networks in Java July 10, 1997 2

queues

cient
 is not

e
 imple-
 must

e

e

• Each process is a sequential, imperative program that reads data from its input
and writes data to its output queues.

• Each queue has just one source and one destination.

• The network has no global data.

• Each process is blocked if it tries to read a communication channel with insuffi
data. The read may proceed when the channel acquires sufficient data. Writing
blocking; each queue may store an unlimited amount of data.

Kahn proved that a process network isdeterminate in the following sense: The sequenc
of tokens on each queue is determined solely by the process network and not by its
mentation [1, 2]. It can also be shown that if a process network will deadlock, then it
deadlock in a unique state that is independent of the scheduling method [1, 2, 3].

Blocking reads may be specified in terms ofget andput methods on the data queue. Th
get method is called by the process reading from the queue, and theput method is called
by the process writing to the queue.

For example, assume that one token is transferred in eachget and eachput method. The
get andput methods are defined in Figure 2.1.

To see how this works, visualize a queueQ that connects two processesA andB, whereA
writes toQ andB reads fromQ, as in Figure 2.2. Suppose thatQ has one token and thatB
reads fromQ by calling theget method onQ. Theget first checks whetherQ is empty. In
this case,Q is not empty. ThefirstToken() method removes the first token from th

int get() {
 if (empty) waitForPut();
 return firstToken();
}
void put (int value) {
 enqueue(value);
 if (waitingForPut) resumeGet();
}

Figure 2.1:
Blocking read implemented byget andput methods.

A
Q

B

Figure 2.2:
A Process Network with two processes con-

nected by a queue.
Implementation of Process Networks in Java July 10, 1997 3

e net-
 may
a com-

 new

 about
es and

ber of

e and
, then it
nded

etwork

nown,
 as
rocess
 other
queue and returns its value. Now suppose thatB reads another token fromQ. This time,Q
is empty, sowaitForPut() is called, blocking the read. Suppose now thatA writes toQ
by calling theput method. This adds a new token toQ. In Java, one thread cannotify
another of an event that affects it. TheresumeGet performs this notification by causing
the correspondingget method to be resumed after theput is complete. At this pointQ is
empty but not blocking a read. IfA now writes toQ, a token will be added toQ. BecauseB
is not waiting for a token, notification is not necessary.

3.0 Bounded Memory Scheduling

In a process network [1, 2], no restriction is placed on the number of processes in th
work or on the amount of memory required by individual processes. Either or both
be unbounded. A process network may require unbounded memory for any one or
bination of the following reasons:

• One or more queues must store an unbounded number of tokens.

• The tokens have unbounded size.

• One or more processes in the network requires unbounded memory.

• While running, the process network is reconfigured by the continual addition of
processes and/or new queues.

Henceforth, unless otherwise stated, we takebounded memory scheduling to mean that the
number of tokens on each queue should remain bounded. We are not concerned
token size, memory requirements of individual processes, or the number of process
queues in the process network.

We summarize the results of Parks [6]. The following questions arise:

• Will a given process network run forever without reaching a deadlock state?

• Will a given process network run inbounded memory? Specifically, is there a bound B
and a scheduling scheme for running the process network such that the num
tokens on each queue never exceeds B?

Each of the above questions is equivalent to the halting problem of a Turing machin
is thus undecidable [4, 6]. If a process network eventually reaches a deadlock state
runs in bounded memory. Thus the question of undecidability for execution in bou
memory applies in the case where running forever is either possible or not known.

At any given moment, several of the processes may be able to run. If the process n
is running on a system with a single processor, then ascheduling policy may be used to
interleave the execution of the processes. Several scheduling policies are well k
such asdata driven anddemand driven. Data driven scheduling activates a process
soon as sufficient input tokens are available. Demand driven scheduling defers p
activation until its output tokens are needed. For further information about these and
scheduling policies, see [6].
Implementation of Process Networks in Java July 10, 1997 4

ecute
 there
 when

when-
rever,

unded
n for-

the
is insuf-

rmin-
n that

ock in

h

g

more
Most traditional scheduling policies, such as data driven and demand driven, will ex
process networks forever, if possible. For each of the traditional scheduling policies
is an example of a process network which the policy runs, using unbounded memory
bounded memory would suffice [6].

Parks gives an algorithm that runs a process network forever in bounded memory
ever that is possible. If a process network requires unbounded memory to run fo
then there is a conflict between the two goals of running forever and doing so in bo
memory. In this case Parks’ algorithm prefers the use of unbounded memory to ru
ever over terminating to stay within bounded memory.

Parks’ algorithm assigns acapacity to each queue in the process network, which limits
number of tokens that the queue can contain. Just as a read is blocked when there
ficient data, a write is blocked when there is insufficient capacity.

With the introduction of blocking writes to process networks, the questions of dete
ism and deadlock must be addressed anew. By similar arguments it can be show
such a process network is determinate, and that if it will deadlock, then it must deadl
a unique state.

For blocking writes, modifiedget and put methods are shown in Figure 3.1, whic
retain blocking reads. Referring again to Figure 2.2, suppose thatQ has a capacity of 1 and
that Q has a token. ThenQ is full. If A writes toQ by callingput , waitForGet() is
called, blocking the write. Now suppose thatB reads fromQ by calling theget method. A
token being available, there is no need to wait. TheresumePut causes the correspondin
put method to be resumed after theget is complete. ThefirstToken() method
removes the first token from the queue and returns its value.

With blocking writes and blocking reads, a deadlock may now occur in which one or
processes are blocked while writing. This is anartificial deadlock. A true deadlockoccurs
when all processes are blocked while reading.

int get() {
 if (empty) waitForPut();
 if (waitingForGet) resumePut();
 return firstToken();
}
void put (int value) {
 if (full) waitForGet();
 enqueue(value);
 if (waitingForPut) resumeGet();
}

Figure 3.1: Blocking writes and blocking reads
implemented byget andput methods.
Implementation of Process Networks in Java July 10, 1997 5

 policy
emand

acities
cases

s are
cur-
ill be
s net-
r in

dead-
und.

ssibly

whose
ue will
ith an
se the
ed by

 Parks
 mini-

 debug-
To run in bounded memory when it is possible to do so, we may use any scheduling
that ensures eventual execution of an executable process (e.g., data driven or d
driven) until a deadlock occurs. If an artificial deadlock occurs, we increase the cap
of the queues to break the deadlock and continue running. One of the following
must apply:

• The process network can run forever in bounded memory: If the initial capacitie
sufficiently large, the process network will run forever without a deadlock ever oc
ring. Otherwise some artificial deadlocks will occur, and the queue capacities w
increased. Eventually the capacities will become sufficiently large for the proces
work to run without further deadlocks. The process network will run foreve
bounded memory.

• The process network can run forever but requires unbounded memory: Artificial
locks will occur continually, and queue capacities will be increased without bo
The process network will run forever using unbounded memory.

• The process network eventually halts: In this case, a true deadlock will occur, po
after some artificial deadlocks and resulting increases in queue capacities.

Figure 3.2 shows this scheduling algorithm in pseudo-code.

When an artificial deadlock occurs, there is some latitude in selecting the queues
capacities should be increased. For example, increasing the capacity of every que
achieve the ultimate goal of executing in bounded memory whenever possible. W
eye toward memory conservation, this is unnecessary. A better choice is to increa
capacities of those queues that are blocking writes, because nothing will be gain
increasing the capacities of queues that are only blocking reads. Beyond that,
observes that it is sufficient to increase the capacity of just one queue, i.e., one with
mum capacity chosen from the queues that are blocking writes [6].

4.0 Implementation in Java

The Java language [7, 8, 9] has a number of features that makes programming and
ging relatively easy:

Figure 3.2:
Scheduling algorithm for execution in bounded memory, if possible.

void deadlockManager() {
 do {
 waitForDeadlock();
 if (trueDeadlock) terminate();
 increaseQueueCapacities(); // Artificial deadlock
 } forever;
}

Implementation of Process Networks in Java July 10, 1997 6

. Thus,
tradi-

ition,
ads, and

re wait-
le
e pro-

adlock
d handle

e total
alyzes

on a
 pro-

t read
spec-
 it can
ing the
s on a
n.

ds are
 is
• Java is object oriented.

• Java supports multiple threads.

• Java supports exception handling.

• Java is strongly typed.

• Java collects garbage, eliminating memory leaks.

• Java provides run-time checks (e.g., array index out of bounds).

In our implementation, we define a thread for each process in the process network
instead of controlling the processing with a data-driven, demand-driven, or other
tional scheduling policy, we run all of the process threads, using thewait() and
notify() methods of Java threads to implement blocking reads and writes. In add
we define a main thread to create the queues, to create and start the process thre
(as we shall see) to detect and handle deadlocks.

When a deadlock occurs, suddenly nothing happens, because all process threads a
ing. Thus arises a problem: how to detect a deadlock. There are at least two possib
solutions, both using a main thread to monitor the execution of the processes in th
cess network:

(1) Run the main thread at a lower priority than the process threads. When a de
occurs, no process threads are running, and so the main thread runs to analyze an
the deadlock. An implementation of this solution is described in [6].

(2) Keep a count of all current read and write blocks. A deadlock is detected when th
number of blocks equals the number of processes, at which point the main thread an
and handles the deadlock. This is a new approach.

Solution (1) seems attractive for the following reasons:

• There is no run-time overhead except during a deadlock.

• Design and coding is relatively simple.

Solution (1) works if the implementation is run on a single processor. However,
multi-processor network, this solution might allow the main thread to run on an idle
cessor while there are process threads still running.

Solution (2) requires some run-time overhead to keep track of the number of curren
and write blocks. Each read block and write block is recorded by incrementing the re
tive counter. If a deadlock condition exists, then the main thread is resumed so that
break the deadlock. Each read unblock and write unblock is recorded by decrement
respective counter. This solution works on a multiprocessor environment as well a
single processor. Judging this to be more robust, we choose it for our implementatio

The methods to support deadlock detection are shown in Figure 4.1. These metho
called from within theget and put methods. A process does not know when it
Implementation of Process Networks in Java July 10, 1997 7

ch

 when

ed by

enting
chro-
d the
blocked; it simply waits for theget or put to return. This approach is valid, because ea
process runs a sequential program; each call to aget or aput must complete before the
process continues. Thus each process may be blocked only by oneget or put at any
given time. A deadlock occurs when all processes are blocked, which occurs exactly
the total number of read and write blocks equals the total number of processes.

We implement mutual exclusion for the block counters, which are global data shar
all the threads. This is accomplished in Java by declaring methods to besynchronized.
When a thread calls a synchronized method of an object, that object is locked, prev
any other concurrent calls to synchronized methods of that object [7, 8, 9]. If a syn
nized method waits for a condition, the lock is released until that condition is set an
method is resumed.

Figure 4.2 shows the additional queue method to increment the queue’s capacity.

void recordReadBlock() {
 increment(readBlockCounter);
 deadlockTest();
}
void recordReadUnblock() {
 decrement(readBlockCounter);
}
void recordWriteBlock() {
 increment(writeBlockCounter);
 deadlockTest();
}
void recordWriteUnblock() {
 decrement(writeBlockCounter);
}
void deadlockTest() {
 if (readBlockCounter + writeBlockCounter
 == processCount) { // deadlock detected
 resumeDeadlockManager();
 }
}

Figure 4.1: Methods to support block counting and deadlock detection.

void incrementCapacity () {
 increment(capacity);
 resumePut();
}

Figure 4.2:
Queue method for incrementing a queue’s capacity.
Implementation of Process Networks in Java July 10, 1997 8

ead

city of
ity as

he test
Figure 4.3 shows theget andput methods in the Queue class modified to record r
and write blocks.

For the main thread we use the algorithm shown in Figure 3.2, increasing the capa
just one queue for each artificial deadlock, a blocking queue with the lowest capac
suggested in [6].

5.0 Tests and examples

Figure 5.1 through 5.8 exhibit pseudo-code definitions for the processes used in t
cases. See [6] for details.

int get() {
 if (empty) {
 recordReadBlock();
 waitForPut();
 }
 if (waitingForGet) {
 recordWriteUnblock();
 resumePut();
 }
 return firstToken();
}
void put (int value) {
 if (full) {
 recordWriteBlock();
 waitForGet();
 }
 enqueue(value);
 if (waitingForPut) {
 recordReadUnblock();
 resumeGet();
 }
}

Figure 4.3: Theget andput methods with calls
to record blocking and unblocking reads and writes.

int stream W = process interleave (int stream U, int stream V) {
 do {
 put(get(U), W);
 put(get(V), W);
 } forever;
}

Figure 5.1: A process to interleaves two streams into one.
Implementation of Process Networks in Java July 10, 1997 9

o.
(int stream V, int stream W) = process alternate (int stream U) {
 do {
 put(get(U), V);
 put(get(U), W);
 } forever;
}

Figure 5.2: A process to distribute odd and even tokens from ones stream to tw

int stream V = process begin_with (int stream U, int x) {
 put (x, V);
 do {
 put(get(U), V);
 } forever;
}

Figure 5.3: A process to insert a token at the beginning of a stream.

(int stream V, int stream W) = process duplicate (int stream U) {
 do {
 int u = get(U);
 put(u, V);
 put(u, W);
 } forever;
}

Figure 5.4: A process to duplicate a stream.

int stream V = process add (int stream U, int x) {
 do {
 put(get(U) + x, V);
 } forever;
}

Figure 5.5: A process to add a constant to each token of a stream.

(int stream V, int stream W)
 = process multiple (int stream U, int y) {
 do {
 int u = get(U);
 if (u mod y == 0) put(u, V);
 else (put u, W);
 } forever;
}

Figure 5.6: A process to separate the multiples of a given constant
from the non-multiples.
Implementation of Process Networks in Java July 10, 1997 10

ffer a
running

apac-
adlock

ssi-

mory
tually

put
n the
To study the behavior of various process networks using our implementation, we o
choice of three modes of execution. We discuss the results of various test cases
under the different modes.

• The free memory mode supports execution without blocking writes. Whenever aput
is called, if the queue is full, the capacity is increased immediately.

• Thefixed memory mode never increases the capacity of any queue. Initial queue c
ities are assigned, and the processes in the process network run until the first de
occurs (either artificial or true), at which point execution is terminated.

• The bounded memory mode supports execution forever in bounded memory, if po
ble, as described above.

Example 5.1 is a process network that will always execute forever in bounded me
regardless of the scheduling policy. Example 5.2 is a process network that will even

(int stream W) = process merge(int stream U, int stream V) {
 int u = get(U);
 int v = get(V);
 do {
 if (u < v) {
 put(u, W);
 u = get(U);
 }
 else if (u > v) {
 put(v, W);
 v = get(V);
 }
 else {
 put(u, W);
 u = get(U);
 v = get(V);
 }
 } forever;
}

Figure 5.7: A process to implement a sorting merge. Two monotonically increasing in
streams are merged into one monotonically increasing stream. Two equal tokens o

two input streams result in one output token.

process print (int stream U) {
 do {
 print(get(U));
 } forever;
}

Figure 5.8: A process to print the tokens of a stream.
Implementation of Process Networks in Java July 10, 1997 11

ut it
arious

easing
ments

-
ut
ory. A
e free

 the
unded
1 for

ut
r will
n in
become deadlocked with any scheduling policy. Example 5.3 will run forever, b
requires unbounded memory to do so. Running these process networks with the v
modes, we observe the expected behavior.

In example 5.4, each of the directed cycles is a source that produces a linearly incr
sequence starting with 0. The upper source increments by 2; the lower source incre
by 3. These two sequences are merged at the processmerge to produce a single increas
ing sequence that is printed byprint . A data driven scheduler will cause the outp
channel from the lower source to grow in size over time, thus using unbounded mem
demand driven scheduler will run this process network in bounded memory. With th
memory option, our implementation runs this example with the output channel from
lower source growing as we would expect with a data driven scheduler. With the bo
memory and fixed memory options, this example runs forever with the capacity of
every channel.

In example 5.5, the processmultiple(3) outputs the multiples of 3 to its upper outp
queue and the non-multiples of 3 to its lower output queue. A data driven schedule
run this example in bounded memory. A demand driven scheduler will fail to ru

Example 5.1 Example 5.2 Example 5.3

inter-
leave

begin_
with(1)

begin_
with(0)

alter-
nate

inter-
leave

begin_
with(0)

alter-
nate

dupli-
cate

begin_
with(0)

inter-
leave

Example 5.4

merge print

dupli-
cate

add(3)

begin_
with(0)

dupli-
cate

add(2)

begin_
with(0)
Implementation of Process Networks in Java July 10, 1997 12

.
ntains

. The

tput
using

ounded
 than

s suffi-

 1, a

t
 capac-
 to 2
cked by
ther has
eue of
mory
bounded memory, because the two sink processesprint must execute at different rates
When run with the free memory and bounded memory options, no queue ever co
more than one token.

Example 5.6 illustrates a graph in which different queues have different bounds
source at the left produces the sequence 0, 1, 2, The processmultiple(5) outputs
all multiples of 5 to its upper output queue and all non-multiples of 5 to its lower ou
queue. The processmerge then merges these two sequences in ascending order, ca
the processprint to print the original sequence 0, 1, 2,

This example demonstrates that the bounded memory scheme only guarantees b
memory, not minimum memory. In fact, the free memory option uses less memory
the bounded memory option. To run forever, the lower output queue frommultiple(5)
must be able to contain three tokens; for all other queues, a capacity of one token i
cient. The free memory option runs this process network within those limits.

Running with the bounded memory option and all queue capacities initially set to
deadlock occurs withduplicate andmultiple(5) write blocked:duplicate is
blocked by its only output queue, andmultiple(5) is write blocked by its lower outpu
queue. All other processes are read blocked. The two write blocking queues have
ity 1. Incrementing the capacity of one of these two write blocking queues from 1
breaks the deadlock, and another deadlock occurs with the same two processes blo
the same two queues. This time one of the two queues has capacity 2, and the o
capacity 1, which is incremented to 2. The process repeats until the lower output qu
multiple(5) has capacity 3, at which point the process network has sufficient me
to run forever. This behavior is consistent with observations reported in [6].

print

print

Example 5.5

add(1)

begin_
with(0)

multiple(3)duplicate

Example 5.6
add(1)

begin_
with(0)

duplicate multiple(5) merge print
Implementation of Process Networks in Java July 10, 1997 13

ning a
t uses
uling
duling
ll run.

 capaci-
 artifi-

sses, a
es in

(artifi-
r dis-

 the

y

6.0 Summary and Conclusions

We discussed an implementation of process networks in Java. Instead of desig
scheduling algorithm that decides which process to run, we implement a policy tha
multiple threads with blocking reads and works correctly regardless of the sched
algorithm used for the threads. The only requirement we make of such of a sche
algorithm is that if there is a process that is not blocked, then at least one process wi

To ensure that memory usage is bounded whenever possible, we implement queue
ties with blocking writes and increase the capacity of a selected queue whenever an
cial deadlock occurs. To detect deadlocks, we track the number of blocked proce
deadlock occurring if and only if this number is equal to the total number of process
the network. In this way we recognize deadlocks, determine the type of deadlock
cial or true), and respond accordingly. This is a valid approach on a multi-processo
tributed system as well as on a single processor with threads.

7.0 References

[1] G. Kahn,The semantics of a simple language for parallel programming, Information
Processing 74, pp. 471-475, Stockholm, August 1974.

[2] G. Kahn & D. MacQueen,Coroutines and Networks of Parallel Processes, Informa-
tion Processing 77, pp.993-998 Toronto, August 1977.

[3] R. Stevens & D. Kaplan, Determinacy of Generalized Schema, IEEE Trans. Comp.,
Vol. 41 pp. 776-779, June 1992.

[4] J. Buck, Scheduling Dynamic Dataflow Graphs with Bounded Memory Using
Token Flow Model, Ph.D. Thesis, University of California, Berkeley, 1993.

[5] E. Lee & T. Parks,Dataflow Process Networks, IEEE Proceedings, pp. 773-799, Ma
1995

[6] T. Parks,Bounded Scheduling of Process Networks, Ph.D Thesis, University of Cali-
fornia, Berkeley, 1995.

[7] K. Arnold & J. Gosling,The Java Programming Language, 1996, Addison Wesley.

[8] G. Cornell & C. Horstmann,Core Java, 1996, Prentice Hall.

[9] M. Grand,Java Language Reference, 1997, O’Reilly.
Implementation of Process Networks in Java July 10, 1997 14

	Implementation of Process Networks in Java
	Richard S, Stevens, Marlene Wan, Peggy Laramie,
	Thomas M. Parks, Edward A. Lee
	DRAFT: 10 July 1997
	1.0 Introduction
	2.0 Process Networks
	3.0 Bounded Memory Scheduling
	4.0 Implementation in Java
	5.0 Tests and examples
	6.0 Summary and Conclusions
	7.0 References

